利用分步积分法:
∫lnxdx
=xlnx-∫xd(lnx)
=xlnx-∫x*1/xdx
=xlnx-∫1dx
=xlnx-x+C
ln为一个算符,意思是求自然对数,即以e为底的对数。lnx可以理解为ln(x),即以e为底x的对数,也就是求e的多少次方等于x。
扩展资料:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。