蝴蝶定理最先是作为一个征求证明的问题。由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法
梯形蝴蝶定理是指平面几何中的重要定理,由于该定理的几何图形形象奇特,形似蝴蝶,所以以蝴蝶来命名,计算公式有S3比S4等于AB比CD。
在梯形中,存在以下关系:相似图形,面积比等于对应边长比的平方S1比S2等于a2比b2,S1比S2比S3比S4等于 a2比b2比ab比ab,S3等于S4。