如何用面面垂直证明 线面垂直

如何用面面垂直证明 线面垂直

首页维修大全综合更新时间:2025-04-30 04:05:14

如何用面面垂直证明 线面垂直

如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。  

求证:OP⊥β。

证明:过O在β内作OQ⊥l,则由二面角

 知识可知∠POQ是二面角α-l-β的平面角。

∵α⊥β

∴∠POQ=90°,即OP⊥OQ

∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β

∴OP⊥β

1、线面垂直的判定定理:直线与平面内的两相交直线垂直。

2、面面垂直的性质:若两平面垂直则在一面内垂直于交线的直线必垂直于另一平面。

3、线面垂直的性质:两平行线中有一条与平面垂直,则另一条也与平面垂直。

4、面面平行的性质:一线垂直于二平行平面之一,则必垂直于另一平面。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.