区别线性微分方程和非线性微分方程:
微分方程中的线性,指的是y及其导数y'都是一次方。如y'=2xy。
非线性,就是除了线性的。如y'=2xy^2。如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。
线性微分方程是指关于未知函数及其各阶导数都是一次方,否则称其为非线性微分方程。
对于一阶微分方程,形如:
y'+p(x)y+q(x)=0
的称为"线性"
例如:
y'=sin(x)y是线性的
但y'=y^2不是线性的
注意两点:
(1)y'前的系数不能含y,但可以含x,如:
y*y'=2 不是线性的
x*y'=2 是线性的
(2)y前的系数也不能含y,但可以含x,如:
y'=sin(x)y 是线性的
y'=sin(y)y 是非线性的
(3)整个方程中,只能出现y和y',不能出现sin(y),y^2,y^3等等,如:
y'=y 是线性的
y'=y^2 是非线性的