
伯努利方程:
P +1/2 ρv² +ρgh = 常量
其中:
v= 流体速度
g=重力加速度(地球表面的值约为 9.8 m/s2)
h=流体处于的深度(从某参考点计)
p=流体所受的压力强度
ρ=流体质量密度
伯努利定律可以从能量守恒定律来推演。说明如下:在一个稳定的水流,沿着直线流向的所有点上,各种形式的流体机械能总和必定相同。也就是说,动能,势能,与内能的总和保持不变。换言之,任何的流体速度增加,即代表动态压力和单位体积动能的增加,而在同时会导致其静态压力,单位体积流体的势能、内能等三者总和的减少。如果液体流出水库,在各方向的流线上,各种形式的能量的总和是相同的;因为每单位体积能量的总和(即压力和单位体积流体的重力势能ρgh的总和)在水库内的任何位置都相同。
P +1/2ρv2 +ρgh = 常量
该方程说明理想流体在流管中作稳定流动时,单位体积的动能1/2ρv2 、重力势能ρgh 、该点的压强P 之和为一个常量.
其中1/2ρv2相与流速有关,常称为动压,ρgh 和P 相与流速无关,常称为静压.
二、单位重量流体中伯努利方程各项的物理意义
ρg =m/u g =mg/u
表示单位体积的重力,以ρg 除各项得:
p/ρg+v平方/2 g+ h = 常量
该方程表示流场中一点上单位重量流体所具有的总机械能. 其中p/ρg表示流场中一点上单位重量流体所具有的压力潜能,也就是压力对单位体积重量流体所做的功,
v平方/2 g 表示单位重量流体所具有的动能, h 就是流场中该点的高度.
由于v平方/2 g+ p/ρg+ z = 常数,定理中每一项都具有长度的量纲. 所以p/ρg 表示所考察点的压力潜能的同时也可表示它能将流体压升到某一高度的能力.
三、单位质量流体中伯努利方程p/ρ项的物理意义
以ρ除各项得:p/ρ+1/2 v平方 + gh = 常量
该方程中:p/ρ项表示流场中某一点上单位质量流体所具有的压力或弹性势能,从能量的角度讨论p/ρ
项也可理解为单位质量流体相对于p = 0 状态所蕴涵的能量.
综上所述:
通过以上的分析推导可以看出伯努利方程是能量方程式,尽管分析问题所用的动力学原理不同,
但导出方程的意义是完全相同的,说明在管内作稳定流动的理想液体具有压力能、势能和动能三种形式的能量,在适合限定条件的情况下,流场中的三种能量都可以相互转换,但其总和却保持不变,这三种能量统称为机械能. 由此可以得出:伯努利方程在本质上是机械能的转换与守恒.