、加法运算:两个矩阵的加是矩阵中对应的元素相加,相加的前提是:两个矩阵要是通行矩阵,即具有相同的行和列数。如:矩阵A=[1 2],B=[2 3] ,A+B=[1+2 2+3]=[3 5]。

2、减法运算:两个矩阵相减,跟加法类似。
3、乘法运算:两个矩阵要可以相乘,必须是A矩阵的列数B矩阵的行数相等,柯以进行乘法,矩阵乘法的原则是,A矩阵的第i行中的元素分别与B矩阵中的第j列中的元素相乘再求和,得到的结果就是新矩阵的第i行第j列的值。
4、除法运算: 一般不说矩阵的除法。都是讲的矩阵求逆。

矩阵加法,数学术语,定义为在数学里,矩阵加法一般是指两个矩阵把其相对应元素加在一起的运算。 矩阵怎么进行加减,矩阵是大学中必然要学习的一部分内容,矩阵的加减是学习矩阵的过程中最简单的一部分。
矩阵减法是四则运算之一,从一个数中减去另一个数的运算叫作减法;已知两个加数的和与其中一个加数,求另一个加数的运算叫作减法。表示减法的符号是“-”,读作减号。

减法遵循几个重要的模式。它是反交换的,意味着改变顺序改变了答案的符号。它不具有结合性,也就是说,当一个减数超过两个数字时,减法的顺序是重要的。减法0不改变一个数字。减法也遵循与加法和乘法等相关运算的可预测规则。所有这些规则都可以被证明,从整数的减法开始,并通过真实的数字和其他东西来概括。继续这些模式的一般二元运算在抽象代数中学习。