相切的判定定理(数学相切找临界的原理)

相切的判定定理(数学相切找临界的原理)

首页维修大全综合更新时间:2025-09-19 04:31:15

相切的判定定理

经过半径的外端并且垂直于这条半径的直线是圆的切线。 切线的识别方法有三种:

(1)和圆只有一个公共点的直线是圆的切线。

(2)和圆心的距离等于圆的半径的直线是圆的切线。

(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

二、辅助线的作法: 证明一条直线是圆的切线的常用方法有两种:

(1)当直线和圆有一个公共点时,把圆心和这个公共点连接起来,则得到半径,然后证明直线垂直于这条半径,记为“点已知,连半径,证垂直。”应用的是切线的判定定理。

(2)当直线和圆的公共点没有明确时,过圆心作直线的垂线,再证圆心到直线的距离(d)等于半径(r),记为“点未知,作垂直,证半径”。应用的是切线的识别方法(2)。

三、知能点2:

切线的性质定理:圆的切线垂直于过切点的半径。

四、辅助线的作法:

有圆的切线时,常常连接圆心和切点得切线垂直半径。记为“见切线,连半径,得垂直。”

相切判定定理是经过半径外端点并且垂直于这条半径的直线是圆的切线。若直线与曲线交于两点,且这两点无限相近,趋于重合时,该直线就是该曲线在该点的切线。初中数学中,若一条直线垂直于圆的半径且过圆的半径的外端,称这条直线与圆相切。圆的切线与过切点的半径有如下关系,也是我们讨论圆与直线相切的一个重要定理。圆的切线垂直于过切点的半径。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.