二次函数知识点汇总及详细剖析(二次函数知识点讲解入门)

二次函数知识点汇总及详细剖析(二次函数知识点讲解入门)

首页维修大全综合更新时间:2026-01-01 16:44:01

二次函数知识点汇总及详细剖析

定义与定义表达式
  一般地,自变量x和因变量y之间存在如下关系:
  y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
  则称y为x的二次函数。
  二次函数表达式的右边通常为二次三项式。

二次函数的三种表达式
  一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
  顶点式:y=a(x-h)^2;+k[抛物线的顶点P(h,k)]
  交点式:y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线]
  注:在3种形式的互相转化中,有如下关系:
  h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a

二次函数解析式的几种形式
  (1)一般式:y=ax2+bx+c(a,b,c为常数,a≠0).
  (2)顶点式:y=a(x-h)2+k(a,h,k为常数,a≠0).
  (3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0.
  说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点
  如果图像经过原点,并且对称轴是y轴,则设y=ax^2;如果对称轴是y轴,但不过原点,则设y=ax^2+k

二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.