克拉默法则是是线性代数中一个关于求解线性方程组的定理。
意思是在确定五个点的二次曲线方程A+Bx+Cy+Dy2+Exy+x2=0的系数时,假若有n个未知数,n个方程组成的方程组:a11X1+a12X2+...+a1nXn=b1,a21X1+a22X2+...+a2nXn=b2,an1X1+an2X2+...+annXn=bn.而当它的系数行列式D不等於0的时候,它的解xi=Di/D,其中Di〔i=1,2,……,n〕是D中的a1i,a2i,……ani(即第i列)依次换成b1,b2,……bn所得的行列式。当b1,b2,...,bn≠0时,方程组为非齐次性方程组。系数行列式D≠0时,系数由唯一的解;系数行列式D=0时,系数均为0。当b1,b2,...,bn=0时,方程组为齐次性方程组。若系数行列式D≠0时,则系数均为0;若系数有非零解时,则系数行列式必为0。这属于线性代数分析