数学的发展史大致可以分为四个时期。
第一时期是数学形成时期,第二时期是常量数学时期等。
其研究成果有李氏恒定式、华氏定理、苏氏锥面。
第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。
人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期。
这个时期的基本的、最简单的成果构成中学数学的主要内容。
这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。
这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
第三时期
变量数学时期。
变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分,即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。
它是数学的一个基础学科。
内容主要包括极限、微分学、积分学、方程及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。
积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
第四时期
现代数学。
现代数学时期,大致从19世纪初开始。
数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。