点M到直线的距离,即过点M向已知直线作垂线,设垂足为N,则垂线段MN的长即是所求的点到直线的距离。
方法一:求出过点M且与已知直线aXbYc=0(a、b均不为零)垂直的直线方程,而后联立方程组,求出垂足N点的坐标,然后利用两点间的距离公式求出点到直线的距离。
方法二:过点M分别作垂直于两坐标轴的直线,且交已知直线分别于C、D两点,三角形MCD为直角三角形,点到直线的距离即是直角三角形MCD斜边上的高。
而C、D两点的坐标较易求解,利用平行于坐标轴的两点间的距离公式,可得到两直角边MC、MD的长度,再利用勾股定理求出斜边的长,最后利用等面积法求出点到直线的距离.