负数的加减运算
它的运算规律与正数的相加减是一样的 但是注意几点:
有两个符号在一起,
1.比如说一个(-)一个(+),此时为(-)
1+(-1)=1-1=0
2.两个负号在一起,(-)和(-),此时为(+)
1-(-1)=1+1=2
如果负号在前面,可以用交换律来算
-1+2=2-1=1
如果两负相减
-1-2=(-1)+(-2)= -3
>
扩展资料:
核心是负负得正,正负得负。
乘法取个列子:6×(-5)=-30 (这里是一正一负的乘法,将数字相乘后前面加负号。)
除法取个列子:(-10)÷(-5)=2 (这里是两个负数的除法,将数字相除后前面加正号(省略正号)。)
加法取个列子:12+(-5)=12-5=7 (加上一个负的数,相当于减去这个数的正数)
减法也是一样的:(-5)-(-8)=(-5)+8=8-5=3
负数1×负数2=(负数1×负数2) =正数
负数×正数=-(正数×负数)=负数
负数1÷负数2=(负数1÷负数2) =正数
负数÷正数=-(负数÷正数) =负数
负数都比零小,则负数都比正数小。零既不是正数,也不是负数。则-a<0<(+)a
负数中没有最小的数,也没有最大的数。
去除负数前的负号等于这个负数的绝对值。
如-2、-5.33、-45等:-2的绝对值为2,-5.33的绝对值为5.33,-45的绝对值为45等。
分数也可做负数,如:-2/5
负数的平方根用虚数单位“i”表示。(实数范围内负数没有平方根)
最大的负整数为:-1
“正负术”是正负术加减法则。其中有一段话是“同名相除,异名相益,正无入负之,负无入正之。”其实他就是加减法则,以现代算式为例,可以将这段话解释如下:
“同名相除”,即同号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值减去减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(-3)=-(5-3)
“异名相益”,即异号两数相减时,括号前为被减数的符号,括号内为被减数的绝对值加上减数的绝对值。例如:
(+5)-(-3)=+(5+3)
(-5)-(+3)=-(5+3)
“正无入负之,负无入正之”,即0减正为负,0减负得正。例如:
0-(+3)=-3
0-(-3)=+3
史料证明:追溯到两百多年前,中国人已经开始使用负数,并应用到生产和生活中。例如,在古代商业活动中,收入为正,支出为负;以盈余为正,亏欠为负.在古代农业活动中,以增产为正,减产为负。中国人使用负数在世界上是首创。