1、平方差公式:a²-b²=(a+b)(a-b)。
1、因式分解常用公式
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
8、三项立方和公式:a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)。
更多:
1、立方和公式
a^3+b^3=(a+b)(a^2-ab+b^2)。
2、立方差公式
a^3-b^3=(a-b)(a^2+ab+b^2)。
3、完全立方和公式
(a+b)^3=a^3+3(a^2)b+3a(b^2)+b^3。
4、完全立方差公式
(a-b)^3=a^3-3(a^2)b+3a(b^2)-b^3。

中学常用“立方”公式
推导过程
1、立方和公式
a^3+b^3=(a+b)^3-3ab(a+b)
=(a+b)[(a+b)^2-3ab]
=(a+b)(a^2+b^2+2ab-3ab)
=(a+b)(a^2+b^2-ab)
=(a+b)(a^2-ab+b^2)。
2、立方差公式
在立方和公式“a^3+b^3=(a+b)(a^2-ab+b^2)”中,
用“(-b)”替换“b”得:
a^3+(-b)^3=[a+(-b)][a^2-a(-b)+(-b)^2]
=(a-b)(a^2+ab+b^2)
3、完全立方和公式
(a+b)^3=(a+b)(a+b)^2
=(a+b)(a^2+2ab+b^2)
=a^3+2(a^2)b+a(b^2)+(a^2)b+2a(b^2)+b^3
=a^3+3(a^2)b+3a(b^2)+b^3。
【注】完全平方和公式:(a+b)^2=a^2+2ab+b^2。
4、完全立方差公式
在完全立方和公式“(a+b)^3=a^3+3(a^2)b+3a(b^2)+b^3”中,
用“(-b)”替换“b”得:
[a+(-b)]^3=a^3+3(a^2)(-b)+3a[(-b)^2]+(-b)^3
=a^3-3(a^2)b+3a(b^2)-b^3。