三项式定理常数项快速求法(三项式定理通用公式)

三项式定理常数项快速求法(三项式定理通用公式)

首页维修大全综合更新时间:2023-12-23 20:39:05

三项式定理常数项快速求法

关于这个问题,三项式定理是指:

$$(a+b+c)^n=sum_{i+j+k=n}inom{n}{i,j,k}a^ib^jc^k$$

其中,$inom{n}{i,j,k}$ 是组合数,其定义为:

$$inom{n}{i,j,k}=frac{n!}{i!j!k!}$$

求三项式定理中常数项的快速方法如下:

首先,当 $i+j+k=n$ 时,$inom{n}{i,j,k}$ 的值为 $1$,否则其值为 $0$。

因此,当 $a+b+c=0$ 时,即 $a=-b-c$,只有当 $i$ 和 $j$ 的奇偶性相同且 $k$ 为偶数时,常数项才不为 $0$。

因此,我们可以将 $n$ 拆分成 $n=2m$ 或 $n=2m+1$ 两种情况,然后分别计算出 $i,j,k$ 的奇偶性相同的所有情况下 $inom{n}{i,j,k}$ 的和,即可得到常数项的值。

具体做法可以参考下面的 Python 代码:

```python

def constant_term(a, b, c, n):

if a + b + c != 0:

return 0

m = n // 2

# 偶数项

sum_even = 0

for i in range(0, m+1, 2):

for j in range(0, m+1-i, 2):

k = m - i - j

if k % 2 == 0:

sum_even += math.comb(n, (i, j, k))

# 奇数项

sum_odd = 0

for i in range(1, m+1, 2):

for j in range(1, m+1-i, 2):

k = m - i - j

if k % 2 == 0:

sum_odd += math.comb(n, (i, j, k))

return sum_even - sum_odd

```

其中,`math.comb(n, (i, j, k))` 是 Python 自带的计算组合数的函数。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.