等比数列前n项求和公式是Sn=n×a1(q=1),等比数列求和公式是求等比数列之和的公式,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。

等比数列前n项求和公式方法
等比数列前n项求和公式方法
等比数列前n项求和公式是Sn=n×a1 (q=1) ,等比数列求和公式是求等比数列之和的公式,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示。
等比数列前N项和的性质
等比数列前N项和等于首项乘以括号里的1减去公比的n次方除以括号里的1减去公比,其中公比不等于1;在等比数列中,依次每k项之和仍成等比数列;若an是等比数列,公比为q1则a2n,a3n是等比数列;按照原来顺序抽取间隔相等的项,仍然是等比数列;等比数列中,连续的,等长的,间隔相等的片段和为等比。
等比数列求和极限公式
求和公式:

等比数列前n项求和公式方法
求和公式用文字来描述就是:Sn=首项(1-公比的n次方)/1-公比(公比≠1)如果公比q=1,则等比数列中每项都相等。