因式分解的所有方法的步骤(因式分解的12种方法的详细解析)

因式分解的所有方法的步骤(因式分解的12种方法的详细解析)

首页维修大全综合更新时间:2024-02-01 10:28:05

因式分解的所有方法的步骤

分解一般步骤:1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。口诀:先提首项负号,再看有无公因式,后看能否套公式,十字相乘试一试,分组分解要合适。

扩展资料:因式分解主要有十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法等方法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。原则:1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。2、分解因式的结果必须是以乘积的形式表示。3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止;5、结果的多项式首项一般为正。 在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子;6、括号内的首项系数一般为正;7、如有单项式和多项式相乘,应把单项式提到多项式前。如(b+c)a要写成a(b+c);8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.