已知两点坐标求直线方程的方法:
设这两点坐标分别为(x1,y1)(x2,y2)。
1、斜截式
求斜率:k=(y2-y1)/(x2-x1)
直线方程 y-y1=k(x-x1)
再把k代入y-y1=k(x-x1)即可得到直线方程。
2、两点式
因为过(x1,y1),(x2,y2)
所以直线方程为:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)。
扩展资料:
其他直线方程表示形式:
1、交点式:f1(x,y) *m+f2(x,y)=0 【适用于任何直线】
表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线。
2、点平式:f(x,y) -f(x0,y0)=0【适用于任何直线】
表示过点(x0,y0)且与直线f(x,y)=0平行的直线。
3、法线式:x·cosα+ysinα-p=0【适用于不平行于坐标轴的直线】
过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度。
4、点向式:(x-x0)/u=(y-y0)/v (u≠0,v≠0)【适用于任何直线】
表示过点(x0,y0)且方向向量为(u,v )的直线。
5、法向式:a(x-x0)+b(y-y0)=0【适用于任何直线】
表示过点(x0,y0)且与向量(a,b)垂直的直线。