1、倍长中线(或类中线)法
在几何题目中如果遇到三角形的中线、类中线、与中点有关的线段,通常考虑倍长中线或倍长类中线的方法,构造全等三角形。
2、截长补短法
若遇到证明线段的和、差、倍、分关系时,通常考虑截长补短法,构造全等三角形。截长是在较长线段中截取一段等于另两条中的一条,然后证明剩余部分等于另一条。补短是将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段;或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。
3、遇角平分线作双垂线法
在题中遇见角平分线,做双垂直,必出全等三角形。可以从角平分线上的点向两边作垂线,也可以过角平分线上的点作角平分线的垂线与角的两边相交。
4、作平行线法
在几何题的证明中,作平行线的方法也非常实用,一般来讲,在等腰、等边这类特殊的三解形中,作平行线绝对是首要考虑。