四种方法证明三角形内角和为180°在△ABC中,∠A、∠B、∠C是三个内角.想要证明∠A+∠B+∠C=180°,也就是要想法证明∠A+∠B+∠C=一个平角.也就是想把三个角集中到一块,用什么方法好呢?
——这就需要用到平行线性质:两直线平行,同位角相等,内错角相等,同旁内角互补,等性质来证明。证明三角形内角和180°证明方法一:(1)延长BC到D (运用“线段可以延长”这一真实命题)(2)过C点作CE∥AB。(运用“过直线外一点可以作已知直线的平行线”)(3)∠A=∠1(运用“两直线平行,内错角相等”)(4)∠B=∠2 (运用“两直线平行,同位角相等”)(5)∠1+∠2+∠ACB=180°(运用“平角的度数”)(6)∠A+∠B+∠ACB=∠1+∠2+∠C(运用“等量可以代换”)(7)∠A+∠B+∠ACB=180°(运用“等量代换”)证明三角形内角和180°证明方法二:(1)过点A作PQ∥BC(2)∠1=∠B(两直线平行,内错角相等)(3)∠2=∠C(两直线平行,内错角相等)(4)又∵∠1+∠2+∠3=180° (平角的定义)(5)∴ ∠BAC+∠B+∠C=180° (等量代换)三角形内角和180°证明方法三:(1)过点A作PQ∥BC,则(2)∠1=∠C(两直线平行,内错角相等)(3)∠BAQ+∠B=180°(两直线平行,同旁内角互补)(4)又∵∠BAQ=∠1+∠2 (平角的定义)(5)∴ ∠2+∠B+∠C=180° (等量代换)证明三角形内角和180°证法方法四:在BC边上任取一点D,作DE∥BA,DF∥CA,分别交AC于E,交AB于F(1)则有∠2=∠B,∠3=∠C(两直线平行,同位角相等)(2)∠1=∠4(两直线平行,内错角相等)(3)∠4=∠A(两直线平行,同位角相等)(4)∴∠1=∠A(等量代换)(5)又∵∠1+∠2+∠3=180°(平角的定义)(6)∴∠A+∠B+∠C=180°.三角形内角和180°