推导公式:
log(1/a)(1/b)=log(a^-1)(b^-1)=-1logab/-1=loga(b)
loga(b)*logb(a)=1
loge(x)=ln(x)
lg(x)=log10(x)
如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。其中a叫做对数的底,N叫做真数。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
扩展资料:
推导:
设b=a^m,a=c^n,则b=(c^n)^m=c^(mn) ①
对①取以a为底的对数,有:log(a)(b)=m ②
对①取以c为底的对数,有:log(c)(b)=mn ③
③/②,得:log(c)(b)/log(a)(b)=n=log(c)(a)∴log(a)(b)=log(c)(b)/log(c)(a)。