乘法可以定义为:求几个相同加数的和的运算,比如3+3+3=9,它可以表示为3×3=9.当然,这时候,至少有一个因数是整数。所以乘法和加法可以是一种包含关系。就像乘法与乘方一样
一、原理不同
1、加法原理
加法原理是分类计数原理,常用于排列组合中,具体是指:做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,……,第n类方式有Mn种方法,那么完成这件事情共有M1+M2+……+Mn种方法。
2、乘法原理
做一件事,完成它需要分成n个步骤,做第一 步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么完成这件事共有 N=m1×m2×m3×…×mn 种不同的方法。 和加法原理是数学概率方面的基本原理。
二、口诀不同
1、加法原理:类类独立
2、乘法原理:类类相关
三、应用不同
1、加法原理
求取矩形的周长。
对于矩形的周长,长、宽虽然在二维空间的两个维内,且两个维相互正交,但是如果缺少长、宽中任何一个,周长仍然有意义(还是长度,只是不完整),则周长与长、宽的关系为:周长=长+宽+长+宽。
2、乘法原理
求取矩形的面积。
对于矩形,长、宽可以看作分别在二维空间的两个维内,且两个维相互正交,如果缺少长、宽中任何一个,矩形面积就失去意义,则矩形面积与长、宽的关系为:面积=长x宽。
乘法是指将相同的数加起来的快捷方式,加法是完全一致的事物也就是同类事物的重复或累计,是数字运算的开始。乘法和加法的性质,共6对和4个衍生性质。
加法是完全一致的事物也就是同类事物的重复或累计,是数字运算的开始,不同类比如一个苹果+一个橘子其结果只能等于二个水果就存在分类与归类的关系。
减法是加法的逆运算;乘法是加法的特殊形式;除法是乘法的逆运算;乘方是乘法的简便形式;开方是乘方的逆运算;对数是在乘方的各项中寻找规律;由对数而发展出导数;然后是微分和积分。数字运算的发展,是更特殊的情况,更高度重复下的规律。