定理:
1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。 a/sinA=b/sinB=c/sinC=2R,(R是三角形外接圆半径)。
2、余弦定理: cosα=(B^2+C^2-A^2)/2BC cosb=(A^2+C^2-B^2)/2AC cosc=(A^2+B^2-C^2)/2AB 推论:
(1)任一多边形的每一条边的平方都等于其它各边的平方和并减去它们两两及其夹角余弦积的二倍. 注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的(共面或异面)夹角.。
(2)任一多面体的每一面的面积的平方都等于其它各面的面积的平方和并减去它们两两及其夹角余弦积的二倍. 注:次处之夹角系指均按同一绕行方向(或顺时针或逆时针)所得的二面角。
(3)正切:tan(A-B)/2=(a-b)/(a+b)*ctanC/2
扩展资料:
正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。