第一,数学归纳法
证明:
当n=1时,左式=1²=1
右式=1*(1+1)(2*1+1)/6=1*2*3/6=1
所以,当n=1时,等式成立。
假设当n=k时,等式也成立,那么:
1²+2²+……+k²=k(k+1)(2k+1)/6
则,当n=k+1时,左式
=1²+2²+……+k²+(k+1)²
=k(k+1)(2k+1)/6+(k+1)²
=(k+1)*[(2k²+k)/6+(k+1)]
=(k+1)*(2k²+k+6k+6)/6
=[(k+1)/6]*(2k²+7k+6)
=[(k+1)/6]*(2k+3)(k+2)
=[(k+1)*(k+2)*(2k+3)]/6
={(k+1)*[(k+1)+1]*[2(k+1)+1]}/6
所以,当n=k+1时,等式也成立
综上: 1²+2²+……+n²=n(n+1)(2n+1)/6
第二,立方差公式作差累加法
证明:n³-(n-1)³=1×[n²+n(n-1)+(n-1)²]=3n²-3n+1
1³-0³=3×1²-3×1+1
2³-1³=3×2²-3×2+1
3³-2³=3×3²-3×3+1
……
n³-(n-1)³=3n²-3n+1
各等式全相加
n³=3×(1²+2²+3²+…+n²)-3(1+2+3+4+…+n)+n
=3×(1²+2²+3²+…+n²)-3n(n+1)/2+n
=3×(1²+2²+3²+…+n²)-n(3n+1)/2
故1²+2²+3²+…+n²=[n³+n(3n+1)/2]/3=n(n+1)(2n+1)/6
第三,
第四 ,函数法
设f﹙n﹚=an³﹢bn²﹢cn﹢d
∴d=f﹙0﹚=0 a+b+c+d=f﹙1﹚=1 8a+4b+2c+d=f﹙2﹚=5 27a+9b+3c+d=f﹙3﹚=14
∴a=1/3 b=1/2 c=1/6 d=0
∴f﹙n﹚=﹙1/3﹚n³﹢﹙1/2﹚n²﹢﹙1/6﹚n=n(n+1)(2n+1)/6