1、同底数幂的乘法:
aᵐ·aⁿ·aᵖ=aᵐ⁺ⁿ⁺ᵖ(m, n, p都是正整数)。
2、幂的乘方(aᵐ)ⁿ=a(ᵐⁿ),与积的乘方(ab)ⁿ=aⁿbⁿ
3、同底数幂的除法:
(1)同底数幂的除法:aᵐ÷aⁿ=a(ᵐ⁻ⁿ) (a≠0, m, n均为正整数,并且m>n)
(2)零指数:a⁰=1 (a≠0);
(3)负整数指数幂:a⁻ᵖ= (a≠0, p是正整数),当a=0时没有意义,0⁻²,0⁻²都无意义。
扩展资料
运算规则
同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;同指数幂相乘,指数不变,底数相乘;同指数幂相除,指数不变,底数相除。
1、零指数幂
当底数n≠0时,由于nᵃ÷nᵃ=1,根据幂的运算规则可知,nᵃ÷nᵃ=nᵃ⁻ᵃ=n⁰=1,
因此定义零指数幂如下:a⁰=1,a≠0。
2、分数指数幂
设
其中n为正整数。两边同时作乘方运算,自乘n次,并根据幂的乘方的运算法则,我们可以得到以下关系式:
3、负指数幂
当底数n≠0时,由于n⁰÷nᵃ=1÷nᵃ=1/nᵃ,根据幂的运算规则可知,n⁰÷nᵃ=n⁰⁻ᵃ=n⁻ᵃ=1/nᵃ
因此定义负指数幂如下:a⁻ᵖ=1/aᵖ,a≠0。
幂运算常用的8个公式是:
1、同底数幂相乘:a^m·a^n=a^(m+n);
2、幂的乘方:(a^m)n=a^mn;
3、积的乘方:(ab)^m=a^m·b^m;
4、同底数幂相除:a^m÷a^n=a^(m-n)(a≠0);
5、a^(m+n)=a^m·a^n;
6、a^mn=(a^m)·n;
7、a^m·b^m=(ab)^m;
8、a^(m-n)=a^m÷a^n(a≠0)。