数学发展史成果描述:数学是人类最古老的科学知识领域之一,它是研究现实世界中空间形式与数量关系的一门科学,是探索自然、改造自然的有力工具。
数学的发展大体上经历了萌芽时期(公元前6世纪前)、常量数学时期(公元前6世纪至16世纪)、变量数学时期(17至18世纪)和现代数学时期(19世纪至今)四个发展阶段。了解数学发展的历程,对于理解数学的研究对象、数学的性质、数学的特点、数学中的哲学思想,了解数学在社会发展中的地位及作用及其整个人类文明史都有积极的意义。
数学发展史大致分为四个阶段。
一、数学形成时期 ( ?——公元前5 世纪)建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。
二、常量数学时期 (前5 世纪——公元17 世纪)也称初等数学时期,形成了初等数学的主要分支:算术、几何、代数、三角。该时期的基本成果,构成中学数学的主要内容。
三、变量数学时期(公元17 世纪——19 世纪)第三个时期的基本结果,如解析几何、微积分、微分方程,高等代数、概率论等已成为高等学校数学教育的主要内容。
四、现代数学时期(公元19 世纪70 年代—— )
1.康托的“集合论”
2.柯西、魏尔斯特拉斯等人的“数学分析”
3.希尔伯特的“公理化体系”
4.高斯、罗巴契夫斯基、波约尔、黎曼的“非欧几何”
5.伽罗瓦创立的“抽象代数”
6.黎曼开创的“现代微分几何”
7.其它:数论、拓扑学、随机过程、数理逻辑、组合数学、分形与混沌等
中国数学发展史
中国数学起源于上古至西汉末期,中国数学的全盛时期是隋中叶至元后期。接下来在元后期至清中期,中国数学的发展缓慢。就在中国数学发展缓慢的时候,西方数学已大跨步超前,于是在中国数学发展史上出现了一个中西数学发展的合流期,这一时期约为公元1840年~1911年之间。近代数学的开端主要集中在公元1911年~1949年这一时期。
中国数学发展史全盛时期——隋中叶至元后期。
任何一个国家科学的发达,都有离不开清平开明的社会环境和雄厚的经济基础。从隋朝中叶到元代末年,由于统治者总结了历代王朝倾覆的教训,采取一系列开明政策,经济得到了迅速发展,科学技术也得到了很大提高,而作为科学技术一部分的数学,也在此时进入了它的全盛时期。
在这一时期,数学教育的正规化和数学人才辈出,是最主要的特点。
隋以前,学校里的教育并不重视数学,因此,没有数学专业一说。而到了隋朝,这一局面被打破了,在相当于大学的学校里,开始设置算学专业。到了唐朝,最高学府国子监,还添设了算学馆,其中博士、助教一应俱全,专门培养数学人才。这时,数学教育的受重视,还反映到了选官问题上。有了数学专业。就少不了好教材。这个时期,有唐朝数学家李淳风等人奉政府的命令,经过研读、筛选,规定出了国子监算馆专用教科书。这套教科书名叫<算经十书>,全套共十部:<周髀算经>、《九章算经>、<孙子算经>、<五曹算经>、<夏侯阳算经>、<张丘建算经>、<海岛算经>、<五经算术>、<缀术>和<缉古算经>。
对这套专业教材,国子监还规定了学习年限,建立了每月一考的制度。数学教育从这时开始走向逐步完善。
在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,他们是:王孝通、刘焯、一行、沈括、李冶、贾宪、杨辉、秦九韶、郭守敬、朱世杰……
当时中国的数学水平很快引起了朝鲜、日本的注意,他们开始往中国派留学生、书商。经过一段学习,在算法引进了关于田亩、交租、谷物交换等知识;在办学中吸取了国子监的课程设置和考试制度。由此看来,在这一阶段,中国已处于世界数学发展的潮头。
近代数学的开端
近代数学开端主要集中在公元1911年~1949年这一时期。
到了19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。
从1847年,以容闳为代表的第一批学生出国后,形成了一个出国留学的高潮。当时出国留学人数每年要达到数千人之多,他们学成回国后,在中国形成了一支不可忽视的现代科学队伍。
早期出国留学的人中,学数学的人不多,其中做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。
这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。
科研上,1949年以前共发表652篇论文,尽管数量不多,范围也仅限于纯数学方面,但是其水平却不低于世界上的同行们。要知道,就是这点微薄的成果还是在克服了政治、经济等多方面难以想象的困难下取得的。
中国古代算数的许多研究成果里面就早已孕育了后来西方数学才设计的先进思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。如:
李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为【李氏恒定式】
华氏定理
“华氏定理”是我国著名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。 数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。