初中数学思想有哪些(数学四大思想八大方法)

初中数学思想有哪些(数学四大思想八大方法)

首页维修大全综合更新时间:2024-04-02 02:39:57

初中数学思想有哪些

初中数学思想有这些:

1、数形结合:是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

2、转化思想:在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

3、分类思想:有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关系等都是通过分类讨论的。

4、整体思想

从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理。

5、类比思想

把两个(或两类)不同的数学对象进行比较,如果发现它们在某些方面有相同或类似之处,那么就推断它们在其他方面也可能有相同或类似之处。

6、整体思想

处理数学问题的着眼点或在整体或在局部.它是从整体角度出发,分析条件与目标之间的结构关系,对应关系,相互联系及变化规律。

7、函数与方程思想

就是用运动和变化的观点去分析研究具体问题中的数量关系,抽象其数量特征,建立函数关系式,利用函数或方程有关知识解决问题的一种重要的基本数学思想。

8、参变数思想

9、有限与无限的思想

10、特殊与一般的思想 1

数学四大思想:数形结合思想,转化思想,分类讨论思想,整体思想。八大数学方法:配方法,因式分解法,待定系数法,换元法,构造法,等积法,反证法,判别式法。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.