新型双转子发动机采用活塞式压燃模式爆燃做功推动中心轴驱动扇叶压气向后喷射,使飞机飞行。其优点是:节能!汽缸内压缩爆燃能量集中转化动能效果好;安全!汽缸活塞结构使用寿命对比高温叶片耐用性好、制造难度低;新型双转子发动机可取代涡扇发动机的燃烧室和高温叶片。
另外,一种缸套活塞转子发动机是改进马自达的转子发动机技术,将汽缸固定在转子内部,每个转子的三个角分别固定一个汽缸,活塞连杆固定在曲轴的中心轴上,并可以围绕中心轴做圆周运动,内、外齿啮合运转将转子导向做8字形曲线运动,活塞伴随汽缸围绕圆心同步运行,而汽缸在做8字运动,汽缸内的容积就发生了变化,也就达到了做功条件,采用圆形管状燃烧室,解决了气密性难题、润滑难题!
因为航空发动机上面体现出来的,都是人类工业文明的巅峰技术,目前世界顶级的航空发动机,被誉为“人类工业文明皇冠上的明珠”不是没有道理的,在这里就和大家简单从航空发动机的材料方面来说一下航发的制造难度,首先先问大家一个问题,你们知不知道航空发动机内部工作环境最恶劣的是哪里么?是涡轮,为什么这么说?主要有两点,一是涡轮需要承受很高的温度,二是同时还需要承受极大的离心力,这个离心力有多大?十几吨以上,因为航发在工作时,涡轮的转速高达10000~20000转/分钟,所以在这种高速转动下,每一片涡轮叶片需要承受非常大的离心力。下图中的就是航发里面的涡轮叶片:
▲没有巴掌大的涡轮叶片
当航空发动机运转时,像图中这个还没有一个巴掌大的涡轮叶片,就需要承受十几吨以上的巨大离心力,以及上千摄氏度的高温,而这种恶劣的工作环境所带来的就是,每一片这种小小的涡轮叶片,都可以产生数百马力的功率,或许大家对这个数据没什么概念,我举个例子吧,大家平时开的普通小轿车,其发动机功率大概在100~150马力左右,而即使是那些使用2.5T或者3.0T发动机的轿跑、SUV等汽车,它们的发动机功率也不过300~400马力。所以,对于航空发动机来说,里面还没有一个巴掌大的涡轮叶片的输出功率就已经比大部分的汽车发动机要大了,至于整个航空发动机的功率,比如那些大型客机上面的航发,它们的功率则是可以很轻松就达到数万马力,还是举个例子,现阶段推力最大的航发GE90系列航空发动机,功率就超过了10万马力。
▲GE90-115B发动机
而跟涡轮推力有密切相关的就是发动机的“热效率”,所谓的热效率,就是指在涡轮的尺寸大小保持不变的情况下,喷射在涡轮上的高压燃气温度的越高,其产生的推力就越大,大概有这么一个规律,高压燃气的温度每提高约55℃,涡轮的推力就可以提高10%。所以,想要提高航空发动机的推力,那么就需要尽可能的提高高压燃气的温度,这样一来,就导致现在的航空发动机里面的涡轮叶片需要承受的燃气温度高达1600℃(举个例子,“阵风”上面的M88发动机的涡轮温度约为1590℃),而在这种高温、高压、高振动的极端环境面前,用来制造涡轮叶片的材料要求是非常之高的,通常是使用铼、钴和铬的镍基高温合金,同时还需要通过单晶(SC)和定向凝固(DS)生产工艺来尽可能提高涡轮叶片在极端环境下的抗蠕变性能。
▲各种晶体结构对比图
接着再来简单说一下什么是单晶体结构材料,这种材料又有着怎样的性能优势?首先,在自然条件下,合金的结构是“小颗粒型”的,这种颗粒状的东西就叫做“晶粒”,而在晶粒和晶粒之间又普遍存在着“界限”,这种界限就叫做“晶界”,如上图中的普通等轴晶体和圆柱形晶体所示,注意看圆圈中放大的部分,就是“颗粒状晶粒”和“柱状晶粒”之间的晶界。而这个晶界在高温条件下又是非常脆弱的,所以高温环境中金属的抗疲劳性、抗蠕变性会变差,因此,想要提高金属材料的整体性能,就需要消除这些脆弱的晶界,而前面说到晶界就是晶粒和晶粒之间的界限,所以只要使材料成为一个完整的“大块晶粒”,即不存在颗粒状晶粒的情况下,晶界也就不复存在了,这个完整的“大块晶粒”也就是上图中的单晶体结构了,它是一个整体,内部不存在晶界,所以,单晶体材料在高温环境下有更好的抗疲劳性和抗蠕变性。▲带热障涂层(TBC)的涡轮叶片
除了通过单晶生产工艺(SC)来提高金属材料在高温环境下的抗蠕变性和抗疲劳性之外,还有一种提高涡轮叶片抗高温性能的技术就是给它覆盖一层热障涂层(TBC),这个TBC工艺的目的就是加强金属材料在高温环境中的抗腐蚀性和抗氧化性,因为工作环境温度越高,材料的抗腐蚀性和抗氧化性要求也就越严格。所以,从上世纪70年代开始,在航空发动机的涡轮叶片就开始使用这种热障涂层(TBC)工艺了,最开始的隔热涂层材料是铝化物,到了后面80年代,效果更好更先进的陶瓷隔温涂层开始面世。而这些热障涂层可以屏蔽100~200摄氏度左右的燃气温度,所以加了这些热障涂层的涡轮叶片,它们的承受高温能力就上了一个台阶,在一些极端条件下,这种隔热手段理论上可以把涡轮叶片的使用寿命提高一倍。▲冲击冷却原理见图
最后一点,其实想要提高涡轮叶片材料的耐高温性能,仅仅有热障涂层(TBC)以及单晶工艺(SC)也是不够的,为什么?因为涡轮材料本身可以承受的极限温度也就是1100℃左右,即使有了热障涂层可以隔绝100~200℃左右的燃气温度,也不过是把涡轮叶片的极限承受温度提高到1300℃这个级别,而前面已经说了,现代的航空发动机涡轮温度可以高达1600℃。所以,想要保证涡轮叶片能够在1600℃甚至以上的极限高温环境中正常工作,就必须还要有其他的辅助手段来提高其耐高温性能,这些手段包括冲击冷却、气流冷却、气膜冷却等,不过大同小异的是,这些冷却手段的共同点就是都得在涡轮叶片的内部勾勒出复杂的气动通道,通过空气对流来带走一部分热量。这里简单说一种冷却方法,像冲击冷却,该冷却手段通常用于涡轮热负荷较高的区域,比如叶片的前端,通过高速气流撞击叶片内表面,产生冷热空气对流,带走一部分热量,以此提高涡轮叶片的高温承受能力,而且这种冷却方式相对于与常规气流冷却手段来讲,可以允许通过更多的热量传递。
▲测试中的军用F135-PW-100发动机
因此,正是因为航空发动机的研发和制造难度非常大,所以现在全世界范围内有资格在这个领域立足的国家也没多少个,尤其是在对减重和综合性能要求更高的军用航空发动机领域,更是屈指可数,因为军用航发是一种小涵道比发动机,而民用客机上的则是大涵道比涡扇发动机,其推力主要来自涡轮带动涡扇,所以,燃气热效率对涡轮叶片推力的影响没有那么明显,这么说吧,全世界能造大推力军用航发的国家就4个,分别是美英俄中,为什么没有法国?因为法国最新的M88发动机是中推,至于德日等国,不好意思,入不了门,日本汽车发动机是很厉害的,但是军用发动机就算了,别说航空发动机了,坦克发动机日本都造不好,反正爬个坡都会爆缸。