三角形中位线的定义 性质和判定各是什么(三角形中位线的性质和判定定理)

三角形中位线的定义 性质和判定各是什么(三角形中位线的性质和判定定理)

首页维修大全综合更新时间:2024-04-17 23:04:57

三角形中位线的定义 性质和判定各是什么

三角形中位线性质

1、三角形的中位线等于第三边的一半;

2、三角形的中位线平行于第三边;

3、三角形中位线截所在边所得的两对线段分别相等。

中线和中位线的区别和联系

区别:

中线和中位线是一个数学术语。两者定义不同,位置不同,长度不同,字面意思不同。

1、定义

中线是连接三角形一个顶点和对边中点的线段;中位线是连接三角形两边中点的线段。

2、位置

中线是图形的中间,中位线是数字的中间

3、长度

中线是竖着的,从一个顶点下来,比较长;中位线是横着的,平行于一条边,和顶点没关系,比较短。

4、字面意思不同

联系:中位线是三角形两边的中点所连成的线,中线是三角形一条边上的中点和与这条边相对的角的连线。两者确切来说,没有太大关系,在位置上,必定相交!

三角形中位线的判定方法

1、过三角形的两边中点的线段,是三角形的中位线。

2、过三角形的一边中点且平行于另一边的线段,是三角形的中位线。

3、平行且等于三角形一边长度的一半的线段,是三角形的中位线。

连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边并且等于第三边边长的一半。连接梯形两腰中点的线段叫做梯形的中位线,梯形的中位线平行于两底,并且等于两底和的一半。

三角形中位线的性质和判定定理如下:

1、三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线。

2、判定定理:三角形的中位线平行于三角形的第三边,并且等于第三边的二分之一。性质:若在一个三角形中,一条线段是平行于一条边,且等于平行边的一半(这条线段的端点必须是交于另外两条边上的中点),这条线段就是这个三角形的中位线。

3、三条中位线围成的三角形的面积是原三角形的四分之一,三条中位线形成的三角形的周长是原三角形的二分之一。注意:三角形中线是连结一顶点和它对边的中点,而三角形中位线是连结三角形两边中点的并且与底边平行且等于底边一半的的线段。

4、中位线判定定理证明:延长DE 到 F,使EF=DE ,连接CF、DC、AF。∵AE=CE,DE=EF,∴四边形ADCF为平行四边形,∴AD∥CF,AD=CF;∵AD=BD,∴BD∥CF,BD=CF,∴四边形BCFD为平行四边形,∴BC∥DF,BC=DF,∴DE∥BC且DE=1/2BC。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.