欧拉公式如何推导出来(欧拉公式推导全过程手写)

欧拉公式如何推导出来(欧拉公式推导全过程手写)

首页维修大全综合更新时间:2024-04-26 04:38:28

欧拉公式如何推导出来

欧拉公式推导如下。

1、欧拉公式是e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。

2、e^ix=cosx+isinx的证明: 因为e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+…… cos x=1-x^2/2!+x^4/4!-x^6/6!…… sin x=x-x^3/3!+x^5/5!-x^7/7!…… 在e^x的展开式中把x换成±ix. (±i)^2=-1, (±i)^3=??i, (±i)^4=1 …… e^±ix=1±ix/1!-x^2/2!??x^3/3!+x^4/4!…… =(1-x^2/2!+……)±i(x-x^3/3!……) 所以e^±ix=cosx±isinx 将公式里的x换成-x,得到: e^-ix=cosx-isinx,然后采用两式相加减的方法得到: sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2.这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作π就得到: e^iπ+1=0。

推导过程 这三个公式分别为其省略余项的麦克劳林公式,其中麦克劳林公式为泰勒公式的一种特殊形式 在e^x的展开式中把x换成±ix. 

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.