1图解分析法这实际是一种模拟法
具有很强的直观性和针对性,数学教学中运用得非常普遍。如工程问题、速度问题、调配问题等,多采用画图进行分析,通过图解,帮助学生理解题意,从而根据题目内容,设出未知数,列出方程解之。
2因式分解法
因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3亲身体验法如讲逆水行船与顺水行船问题
有很多学生都没有坐过船,对顺水行船、逆水行船、水流的速度,学生难以弄清。为了让学生明白,我举骑自行车为例(因为大多数学生会骑自行车),学生有亲身体验,顺风骑车觉得很轻松,逆风骑车觉得很困难,这是风速的影响。并同时讲清,行船与骑车是一回事,所产生影响的不同因素一个是水流速,一个是风速。这样讲,学生就好理解。
换元法
换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4审题的仔细性
仔细审题是正确理解题目的基本意思,是正确解题的基础。在做应用题过程中,学生审题不清楚、不仔细,是做错题的主要原因。如例1:小青蛙说:“我每天吃30只虫子。”大青蛙说:“我每天比你多吃32只虫子。”问:两只大青蛙和一只小青蛙7天吃多少只虫子?因学生审题不清导致的解题错误大概有以下几类。①没仔细分析大青蛙吃多少只虫子,直接列式为:(30+32+32)×7。②没看清提问,直接列式:(30+30+32)×7。③两种错误皆有,列式为:(30+32)×7。这几种是常见的审题不仔细导致的解题错误,这一类错误往往多见于较简单的应用题解题中
数学的大题是很难的一部分,下面我就大家整理一下初一数学大题 解题方法 与技巧,仅供参考。
代入验证法
代入验证法也是一个比较有效且简单的算法,多用于已知条件求解的案例中,这种题目多为送分题,像在二次函数运算时,题目中给出二次函数经过两点,求解这个解析式,如果不想列方程式进行计算,可以直接数据代入答案中解析式,选出正确答案即可。
常用的数学思想方法
1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。数学学科的各部分之间也是相互联系,可以相互转化的。在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
理清思路,从问题的思考角度培养学生的解题技巧
高效课堂教学除了概念的讲解之外,主要集中在解题能力的培养上。学生不仅要理解例题,而且要做大量的练习题。在解题训练中,教师首先要引导学生分析题意,明确思路,再动笔解题。培养学生解题思路时,教师可以要求学生严格遵守一定的解题程序去思考,以形成良好的解题习惯。
进行解题思考时,学生首先要仔细地读题,弄清楚题目考察什么,明确各个数据之间的关系,然后解题。有必要时可以把相关的数据关系先列出来,以提高解题的效率,也提高解题的准确度。例如,学习求“几分之几”的方法时,教师先不必急着答题,而是引导学生进行思考,谁是谁的几分之几。经过思考,学生知道了用乘法计算,解题就容易了。从读题、思考、发现规律到最后解题,学生的思路都非带清晰,形成了良好的解题思考习惯,学习过程就易提高效率和质量。