柯西
基本不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的.但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步.
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解. 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用.
用不等号将两个解析式连结起来所成的式子.在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.