将平面方程由一般式转化为截距式:
点法式:一般形式为a(x-a)+b(y-b)+c(z-c),其中(a,b,c)为其平面的法向量,(a,b,c),为平面所经过的一点。由于平面经过的点为无数,所以次方程的点法式不唯一。令次方程x=0,则有-4y+z-5=-4(y+1)+z-1=0,所以化成的点法式可以表示为3x-4(y+1)+z-1=0。
截距式:一般形式为x/a+y/b+z/c=1,其中a,b,c是平面在x轴、y轴、z轴的截距。因为3x-4y+z-5=0,则3x-4y+z=5,两边同时除以5得到截距式为3x/5-4y/5+z/5=1。
方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。