互质数为数学中的一种概念,即两个或多个整数的公因数只有1的非零自然数。
小学数学教材对互质数是这样定义的:公因数只有1的两个非零自然数,叫做互质数。
扩展资料
互质数具有以下定理:
(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;
(2)任何相邻的两个数互质;
(3)两个不同的质数,为互质数;
(4)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2;
(5)多个数的若干个最大公因数只有1的正整数,叫做互质数;
(6)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质。
小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。” 这里所说的“两个数”是指自然数。 “公约数只有 1”,不能误说成“没有公约数。” 判别方法: (1)两个不相同质数一定是互质数。 例如,2与7、13与19。 (2)一个质数如果不能整除另一个合数,这两个数为互质数。 例如,3与10、5与 26。 (3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。 (4)相邻的两个自然数是互质数。如 15与 16。 (5)相邻的两个奇数是互质数。如 49与 51。 (6)大数是质数的两个数是互质数。如97与88。 (7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。 (8)2和任何奇数是互质数。如2和87。 (9)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。 如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。 (10)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是小数的约数,这两个数是互质数。如85和78。 85-78=7,7不是78的约数,这两个数是互质数。 (11)两个数都是合数,大数除以小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是小数的约数,这两个数是互质数。如 462与 221 462÷221=2……20, 20=2×2×5。 2、5都不是221的约数,这两个数是互质数。 (12)减除法。如255与182。 255-182=73,观察知 73182。 182-(73×2)=36,显然 3673。 73-(36×2)=1, (255,182)=1。 所以这两个数是互质数。 三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、4。另一种不是两两互质的。如6、8、9。