r=c/(2+π)。(c为半圆周长,r为半径)。
解:
(1)半圆的周长由两个部分组成,一个是圆的直径,一个是圆一半的长度。
(2)设半径为r,则圆的直径=2r,圆一半的长度=2πr/2=πr。
(3)假设半圆的周长为c,则c=2r+πr=(2+π)r,得r=c/(2+π)。
扩展资料:
与圆相关的公式:
1、圆面积:S=πr²,S=π(d/2)²。(d为直径,r为半径)。
2、半圆的面积:S半圆=(πr^2)/2。(r为半径)。
3、圆环面积:S大圆-S小圆=π(R^2-r^2)(R为大圆半径,r为小圆半径)。
4、圆的周长:C=2πr或c=πd。(d为直径,r为半径)。
5、半圆的周长:d+(πd)/2或者d+πr。(d为直径,r为半径)。
引申:
1、扇形弧长:L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
2、扇形面积:S=nπ R²/360=LR/2(L为扇形的弧长)
3、圆锥底面半径: r=nR/360(r为底面半径)(n为圆心角)
4、扇形面积公式:S=nπr²/360=rl/2
R:半径,n:弧所对圆心角度数,π:圆周率,L:扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n。
半径r=L/(2π)。
解答过程如下:
(1)知道半圆的周长,设圆的周长为L。
(2)根据圆的周长公式:L=2πr(其中r为半径),可得:半径r=L/(2π)。
扩展资料:
圆的性质:
(1)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(2)弦切角的度数等于它所夹的弧的度数的一半。
(3)圆内角的度数等于这个角所对的弧的度数之和的一半。
(4)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(5)在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
(6)在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。