面面垂直的性质定理一共有四条,定理如下:
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。求解定理为,已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。求证:OP⊥β。
2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。求解定理为,已知α⊥β,A∈α,AB⊥β。求证:AB⊂α。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。求解定理为,已知:α⊥γ,β⊥γ,α∩β=l。求证:l⊥γ。
4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)求解定理为,已知α⊥β,a⊥β,a∉α。求证a∥α。
1、如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。求解定理为,已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP?α。求证:OP⊥β。
2、如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。求解定理为,已知α⊥β,A∈α,AB⊥β。求证:AB?α。
3、如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。求解定理为,已知:α⊥γ,β⊥γ,α∩β=l。求证:l⊥γ。
4、如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)求解定理为,已知α⊥β,a⊥β,a?α。求证a∥α。