1、不定积分,是微积分里一个重要的计算。若F'(x)=f(x),我们称F(x)为f(x)的一个原函数。f(x)的不定积分,定义为f(x)所有的原函数的集合。换句话说,一个函数的不定积分,就是很多原函数构成的。而求原函数,就是把求导逆过来做!
2、不定积分和定积分是两种截然不同的运算。只是牛顿莱布尼茨公式建立起了它们的联系。不定积分是一种符号运算,其结果是一个函数集合,而不是一个数值。它是求导运算的逆运算。定积分本质上是一个泛函,将区间上满足一定条件的函数映射为一个数值。
3、积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。