实数按定义和性质区分(实数按性质和定义可以分为什么)

实数按定义和性质区分(实数按性质和定义可以分为什么)

首页维修大全综合更新时间:2024-07-04 18:59:24

实数按定义和性质区分

实数,是有理数和无理数的总称。

数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。

实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。

所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。

拓展资料:

一、实数的分类:

(1)按定义分类

(2)按正负(性质)分类:

二、从有理数扩充到实数以后,有理数中的相反数、倒数、绝对值等概念在实数范围内具有同样的意义

(1)实数a的相反数为-a,零的相反数是其本身;若实数a与b互为相反数,则a+b=0,反之亦然.

(2)实数a的倒数为1/a(a≠0),实数a与b互为倒数,则ab=1,反之亦然.

(3)实数a的绝对值表示为|a|,正实数的绝对值是它本身,零的绝对值是零,负实数的绝对值是它的相反数.

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.