余数定理求根公式推导(同余定理公式相乘同余的推导过程)

余数定理求根公式推导(同余定理公式相乘同余的推导过程)

首页维修大全综合更新时间:2024-08-15 15:00:07

余数定理求根公式推导

余数定理是代数学中的一个基本定理,它描述了多项式除以(x - a)的余数与将(x)替换为(a)后的多项式值相等的关系。余数定理的表述为:如果多项式(f(x))除以(x - a)的余数为(r),则(f(a) = r)。

下面是余数定理的推导过程:

1. **假设多项式为**:

   令多项式为(f(x) = a_nx^n + a_{n-1}x^{n-1} + ldots + a_1x + a_0),其中(a_n)是最高次项的系数,(n)是多项式的次数。

2. **用(x - a)除(f(x))**:

   使用长除法或者辗转相除法,将(f(x))除以(x - a),得到商式(q(x))和余数(r),即:

   [ f(x) = (x - a)q(x) + r ]

3. **代入(x = a)**:

   将(x)替换为(a),得到:

   [ f(a) = (a - a)q(a) + r = r ]

所以,余数定理成立,即多项式(f(x))除以(x - a)的余数等于将(x)替换为(a)后的多项式值。这个定理在代数学中有很多应用,特别是在因式分解、多项式插值等问题中。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.