概念:真子集就是包含某集合的其中的一个或若干个元素但又不全部包含的集合,假如说有一个集合{1,2},它的真子集就有空集,{1}和{2},而{1,2}只能叫它的子集而不是真子集.空集是没有任何元素的集合,是除了空集外任何集合的真子集
性质是:若一个集合有真子集,那么这个集合一定是非空集合。
真子集(proper subset)是指如果集合A是集合B的子集,并且集合B中至少有一个元素不属于A,则集合A是集合B的真子集。
真子集
一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集(subset)。记作A⊆B(或B⊇A),读作“A包含于B”(或“B包含A”)。
即,对于集合A与B,∀x∈A有x∈B,则A⊆B。可知任一集合A是自身的子集,空集是任一集合的子集。
真子集
如果集合A⊆B,存在元素x∈B,且元素x不属于集合A,我们称集合A与集合B有真包含关系,集合A是集合B的真子集(proper subset)。记作A⊊B(或B⊋A),读作“A真包含于B”(或“B真包含A”)。
即:对于集合A与B,∀x∈A有x∈B,且∃x∈B且x∉A,则A⊊B。空集是任何非空集合的真子集。
非空真子集:如果集合A⊊B,且集合A≠∅,集合A是集合B的非空真子集(nonvoid proper subset)。