三年级数学等差数列解题技巧(三年级等差数列公式大全)

三年级数学等差数列解题技巧(三年级等差数列公式大全)

首页维修大全综合更新时间:2024-08-11 00:32:17

三年级数学等差数列解题技巧

解答数列的题,首先需要熟悉数列中的等差数列、等比数列的性质,因为这两类基本数列是绝大多数数列类型的“宗”,很多看起来很复杂的数列题都是离不开这两种基本数列。

2、对于选择题或填空题这类小题来说,考查的大多数是等差数列和等比数列。这就体现出学习等差数列与等比数列是解答数列题型的关键,也是重点,再难的数列题也是从基础出发,所以,大家不要害怕数列题型。

3、在后面的综合题考查中,有一个特别重要的方法就是不完全归纳法,讨论的是一个数列有没有存在某种规律性质,可以根据前面几项的推导过程、结论来慢慢发现题中的普遍规律。

4、如果看出题的规律,方向是很明确了,证明的过程也就没有问题了。不完全归纳法其实是在猜测的基础上进行大胆假设,当然主要是从归纳来考虑,所以说,尝试对解答数列题型是很有作用的。

5、当然,上面的方法是教大家如果快速入手数列题型。如果想更好的掌握数列题,是离不开大家平时的练习,熟能生巧,多总结,多摸索,多练习,相信大家对数列题型都不会有太大的问题。

6、有关数列的定理口诀:

等差等比两数列,通项公式n项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换。

取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考。

一算二猜三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化。

1.公式法

2.错位相减法

3.求和公式

4.分组法

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

5.裂项相消法

适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。

注意:余下的项具有如下的特点

(1)余下的项前后的位置前后是对称的。

(2)余下的项前后的正负性是相反的。

6.数学归纳法

一般地,证明一个与正整数n有关的命题,有如下步骤:

(1)证明当n取第一个值时命题成立;

(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。

【例】

求证:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… 

+ n(n+1)(n+2)(n+3) =

[n(n+1)(n+2)(n+3)(n+4)]/5

证明:

当n=1时,有:

1×2×3×4 = 24 = 2×3×4×5/5

假设命题在n=k时成立,于是:

1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… 

+ k(k+1)(k+2)(k+3) = 

[k(k+1)(k+2)(k+3)(k+4)]/5

则当n=k+1时有:

1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… 

+ (k+1)(k+2)(k+3)(k+4)= 

1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… 

+ k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)

= [k(k+1)(k+2)(k+3)(k+4)]/5 + (k+1)(k+2)(k+3)(k+4)

= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)

= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5

即n=k+1时原等式仍然成立,归纳得证。

7.并项求和法

(常采用先试探后求和的方法)

例:1-2+3-4+5-6+……+(2n-1)-2n

方法一:(并项)

求出奇数项和偶数项的和,再相减。

方法二:

(1-2)+(3-4)+(5-6)+……+[(2n-1)-2n]

方法三:

构造新的数列,可借用等差数列与等比数列的复合。

an=n(-1)^(n+1)

(二)等差数列判定及其性质

1.等差数列的判定

(1)a(n+1)-a(n)=d (d为常数、n ∈N*)[或a(n)-a(n-1)=d,n ∈N*,n ≥2,d是常数]等价于{a(n)}成等差数列。

(2)2a(n+1)=a(n)+a(n+2) [n∈N*] 等价于{a(n)}成等差数列。

(3)a(n)=kn+b [k、b为常数,n∈N*] 等价于{a(n)}成等差数列。

(4)S(n)=A(n)^2 +B(n) [A、B为常数,A不为0,n ∈N* ]等价于{a(n)}为等差数列。

2.特殊性质

在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。

即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中

【例】

数列:1,3,5,7,9,11中a(1)+a(6)=12 ; 

a(2)+a(5)=12 ; a(3)+a(4)=12 ; 

即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。

数列:1,3,5,7,9中a(1)+a(5)=10 ; a(2)+a(4)=10 ; 

a(3)=5=[a(1)+a(5)]/2=[a(2)+a(4)]/2=10/2=5 ; 

即,若项数为奇数,和等于中间项的2倍,另见,等差中项。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.