矩阵A可逆,有AA-1=I 。(A-1) TAT=(AA-1)T=IT=I ,AT(A-1)T=(A-1A)T=IT=I
由可逆矩阵的定义可知,AT可逆,其逆矩阵为(A-1)T。而(AT)-1也是AT的逆矩阵,由逆矩阵的唯一性,因此(AT)-1=(A-1)T。
性质:
①同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的`分块矩阵。
② 数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。
③ 分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。
④ 分块上(下)三角形矩阵对应的行列式。