圆锥的侧面积公式:S=1/2αl²=πrl
圆锥侧面积=n/360×π×R2=1/2LR (n指扇形顶角度数,R是圆锥底面半径,L指母线)
圆锥的侧面积推导,需要把圆锥展开;数学上规定,圆锥的顶点到该圆锥底面圆周上任意一点的连线 叫圆锥的母线;
沿圆锥的任意一条母线剪开展开成平面图形即为一个扇形;展开后的扇形的半径就是圆锥的母线,
展开后的扇形的弧长就是圆锥底面周长;通过展开,就把求立体图形的侧面积 转化为了 求平面图形的面积.
设圆锥的母线长为 L ,设圆锥的底面半径为 R ,
则展开后的扇形半径为 L ,弧长为 圆锥底面周长 (2πR)
扇形的面积公式为:S = (1/2)× 扇形半径 × 扇形弧长.
= (1/2)× L × (2πR)
= π R L
即圆锥的侧面积为:圆锥底面半径与圆锥母线长的乘积的π倍.
扩展资料;
体积
一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=πr^2h),得出圆锥体积公式:
其中S是圆柱的底面积,h是圆柱的高,r是圆柱的底面半径。