导函数极值存在的条件
①函数在处可导,是在处取得极值的必要不充分条件,而不是充要条件。即可导函数的极值点一定满足,但当时,不一定是极值点。求如的极值点,由得个解,但只有是极值点。一般地,可导函数在两侧的符号相反,则存在极值;如果在两侧的符号相同,则在处无极值。
②可导函数在点处取得极值的充要条件是,且在左右两侧的符号不同。 求函数极值的步骤 ①确定函数的定义域; ②求导数;
③求方程的解;
④检查方程的解的左右两侧导数的符号,确定极值点(最好利用列表法)。 如果的符号从的左侧到右侧由正变负,那么为函数的极大值; 如果的符号从的左侧到右侧由负变正,那么为函数的极小值; 如果在的左右两侧符号相同,那么不是函数的极值。