若函数
在闭区间
上连续,则在积分区间
上至少存在一个点
,使下式成立
其中,a、b、
满足:
。[1]
二重积分的中值定理
设f(x,y)在有界闭区域D上连续,
是D的面积,则在D内至少存在一点
,使得:
定理证明
设
在
上连续,因为闭区间上连续函数必有最大最小值,不妨设最大值为
,最小值为
,最大值和最小值可相等。
对
两边同时积分可得:
同除以
从而得到:
由连续函数的介值定理可知,必定
,使得
,即:
命题得证。
定理的条件中要求f(x) 在闭区间上连续,仅在开区间上连续或者仅在闭区间上可积都不能保证结论成立。