离差平方和公式是什么(总离差平方和计算公式推导)

离差平方和公式是什么(总离差平方和计算公式推导)

首页维修大全综合更新时间:2025-01-31 20:47:58

离差平方和公式是什么

离散型随机变量方差计算公式:D(X)=E{[X-E(X)]^2}=E(X^2)-[E(X)]^2;

连续型随机变量X方差计算公式:D(X)=(x-μ)^2f(x)dx。扩展资料:

方差的性质:1、设C是常数,则D(C)=02、设X是随机变量,C是常数,则有3、设X与Y是两个随机变量,则其中协方差特别的,当X,Y是两个不相关的随机变量则,此性质可以推广到有限多个两两不相关的随机变量之和的情况。

离差平方和

离差平方和(Sum of Squares of Deviations)是各项与平均项之差的平方的总和。定义是设x是一个随机变量,令η=x-Ex, 则 称 η为x的离差,它反映了x与其数学期望Ex的偏离程度。

基本信息

中文名

离差平方和

外文名

sums of squared deviations

定义

各项与平均项之差的平方的总和

基本定义

设x是一个随机变量,令η=x-Ex, 则 称 η为x的离差。它反映了x与其数学期望Ex的偏离程度.

离差平方和

与方差的关系

离差平方和与方差的关系

根据数学期望的性质,离差的数学期望总是等于0,没有实用价值

通常用随机变量x 离差的平方的数学期望来描述随机变量x的分布的分散程度,并把其称为x的方差,记作Dx

离差平方和

离差平方和

总体方差,样本方差

离差平方和

样本计算

离差平方和的样本计算一般用计算机计算。以excel为例:先用Varp计算总体方差,然后 求出离差平方和。

离差平方和

分解

通过对离差平方和的分解进行方差分析。统计学的实践表明, 于某一特性量经过多次试验的结果,一 般不会是同一数值, 是彼此有差异, 这种差异反映了这试验受各种条件( 称为因素) 制约. 离差平方和就反映了这种制约因素引起的差异大小. 为解决此问题, 英国统计学家Fisher提 出了方差分析的方法, 基本思想是将总的离差平方和分解为几个部分, 每一部分反映了方差的一种来源, 然后利用F分布进行检验 .

离差平方和的分解类似于物理学的平行轴定理

单因素方差分析,离差平方和的分解:

离差平方和

离差平方和

离差平方和

离差平方和

其中 代表误差平方和,代表总离差平方和,代表处理A的不同水平间的离差平方和

离差平方和

将所有数据用Varp求方差,

A的每个水平都有若干个数据,假设A有k个水平,对这k个组求各自的离差平方和,得到组内误差:

离差平方和

各个组的误差相加得到总的误差平方和:

离差平方和

离差平方和

最后根据 求出A的处理平方和

这是方差分析的第一步。

如果 每个分组的数据一样多,也可以这样做:

离差平方和

求出每个组的平均值,对这些平均值求方差,再乘以N,得到

离差平方和

离差平方和

试想,如果每个分组只有一个数据,此时没有组内平方和,所以,分组平均值的离差平方和就是。

离差平方和

对于两因素无交互的方差分析(假设共

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.