逆变功率模块的损坏
1.1.1 判断逆变功率模块主要有IGBT、IPM等,检查外观是否已炸开,端子与相连印制板是否有烧蚀痕迹。用万用表查C-E、G-C、G-E 是否已通,或用万用表测P对U、V、W 和N 对U、V、W 电阻是否有不一致,以及各驱动功率器件控制极对U、V、W、P、N 的电阻是否有不一致,以此判断是哪一功率器件损坏。
1.1.2 损坏的原因查找
(1)器件本身质量不好。
(2)外部负载有严重过电流、不平衡,电动机某相绕阻对地短路,有一相绕阻内部短路,负载机械卡住,相间击穿,输出电线有短路或对地短路。
(3)负载上接了电容,或因布线不当对地电容太大,使功率管有冲击电流。
(4)用户电网电压太高,或有较强的瞬间过电压,造成过电压损坏。
(5)机内功率开关管的过电压吸收电路有损坏,造成不能有效吸收过电压而使IGBT损坏,如图1所示。
(6)滤波电容因日久老化,容量减少或内部电感变大,对母线的过压吸收能力下降,造成母线上过电压太高而损坏IGBT。正常运行时母线上的过电压是逆变开关器件脉冲关断时,母线回路的电感储能转变而来的。
(7)IGBT或IPM功率器件的前级光电隔离器件因击穿导致功率器件也击穿,或因在印制板隔离器件部位有尘埃、潮湿造成打火击穿,导致IGBT、IPM损坏。
(8)不适当的操作,或产品设计软件中有缺陷,在干扰和开机、关机等不稳定情况下引起上下两功率开关器件瞬间同时导通。
(9)雷击、房屋漏水入侵,异物进入、检查人员误碰等意外。
(10)经维修更换了滤波电容器,因该电容质量不好,或接到电容的线比原来长了,使电感量增加,造成母线过电压幅度明显升高。
(11)前级整流桥损坏,由于主电源前级进入了交流电,造成IGBT、IPM损坏。
(12)修理更换功率模块,因没有静电防护措施,在焊接操作时损坏了IGBT。或因修理中散热、紧固、绝缘等处理不好,导致短时使用而损坏。
(13)并联使用IGBT,在更换时没有考虑型号、批号的一致性,导致各并联元件电流不均而损坏。
(14)变频器内部保护电路(过电压、过电流保护)的某元件损坏,失去保护功能。
(15)变频器内部某组电源,特别是IGBT驱动级 、-电源损坏,改变了输出值或两组电源间绝缘被击穿。
1.1.3 更换
只有查到损坏的根本原因,并首先消除再次损坏的可能,才能更换逆变模块,否则换上去的新模块会再损坏。
(1)IGBT 同绝缘栅场效应管一样要避免静电损坏。在装配焊接中防止损坏的根本措施是,把要修理的机器、IGBT 模块、电烙铁、人、操作工作台垫板等全部用导线连接起来,使得在同一电场电位下进行操作,全部连接的公共点如能接地就更好。特别是电烙铁头上不能带有市电高电位,示波器电源要用隔离良好的变压器隔离。IGBT模块在未使用前要保持控制极G 与发射极E 接通,不得随意去掉该器件出厂前的防静电保护G-E 连通措施。
(2)功率模块与散热器之间涂导热硅脂,保证涂层厚度0.1耀0.25 mm,接触面80%以上,紧固力矩按紧固螺钉大小施加(M4 13 kg·cm,M5 17 kg·cm,M6 22 kg·cm),以确保模块散热良好。
(3)机器拆开时,要对被拆件、线头、零件做好笔记。再装配时处理好原装配上的各类技术措施,不得简化、省略。例如,输入的双绞线、各电极连接的电阻阻值、绝缘件、吸收板或吸收电容都要维持原样;要对作了修焊的驱动印制板进行清洁和防止爬电的涂漆处理,以及保证绝缘可靠,更不要少装和错装零部件。
(4)并联模块要求型号、编号一致,在编号无法一致时,要确保被并联的全部模块性能相同。
(5)对因炸机造成铜件的缺损,要把毛刺修圆砂光,避免因过电压发生尖端放电而再次损坏。
当IGBT正常导通时其饱和压降很低,当IGBT过电流时管压降VCE会随着短路电流的增加而增大,增大到一定值时,检测二极管VDB将反向导通,此时反向电流信号经IGBT驱动保护电路送给CPU 处理器,CPU 封锁IGBT 输出,以达到保护作用。如果检测二极管VDB损坏,则康沃变频器会出现ER15 故障,现场处理时可更换检测二极管以排除故障。
1.10.6 故障ER11
康沃变频器出现ER11 故障表示变频器过热,可能的原因主要有:风道阻塞、环境温度过高、散热风扇损坏不转及温度检测电路异常。现场处理时先判断变频器是否确实存在温度过高情况,如果温度过高可先按以上原因排除故障;若变频器温度正常情况下出现ER11 报警,则故障原因为温度检测电路故障。康沃22 kW以下机型采用的七单元逆变模块,内部集成有温度元件,如果模块内此部分电路也会出现ER11 报警,另处当温度检测运算电路异常时也会出现同样故障现象。
2 变频器驱动电路常见问题及解决方案
近10 多年来,随着电力电子技术、微电子技术及现代控制理论向交流电气传动领域的渗入,变频交流调速已逐渐取代了过去的转差率调速、变极调速、直流调速等调速技术。几乎可以说,有交流电动机的地方就有变频器的使用。其最主要的特点是具有高效率的驱动性能及良好的控制特性。
现在通用型的变频器一般包括以下几个部分:整流桥、逆变桥、中间直流电路、预充电电路、控制电路、驱动电路等。一台变频器的好坏,驱动电路起着至关重要的作用,现就来谈谈驱动电路常见的问题以及解决的办法。
随着技术的不断发展,驱动电路本身也经历了从插脚式元件的驱动电路到光耦驱动电路,再到厚膜驱动电路,以及比较新的集成驱动电路。目前后三种驱动电路在维修中还是经常能遇到的。
下面介绍几种驱动电路的维修方法。
2.1 驱动电路损坏的原因及检查
造成驱动损坏的原因是各种各样的,一般来说,出现的问题也无非是U、V、W三相无输出或输出不平衡,或输出平衡但是在低频时抖动,还有启动报警等。当一台变频器大电容后的快速熔断器断开,或者是IGBT 逆变模块损坏的情况下,驱动电路基本都不可能完好无损,切不可换上好的快速熔断器或IGBT逆变模块,这样很容易造成刚换上的新器件再次损坏。这时应该着重检查驱动电路上是否有打火的印记。可以先将IGBT逆变模块的驱动脚连线拔掉,用万用表电阻挡测量六路驱动是否阻值都相同(但是极个别的变频器驱动电路不是六路阻值都相同的,如三菱、富士等变频器)。如果六路阻值都基本相同也不能完全证明驱动电路是完好的,接着需要使用电子示波器测量六路驱动电路上电压是否相同,当给定一个起动信号时六路驱动电路的波形是否一致。如果没有电子示波器,也可以尝试使用数字式电子万用表来测量驱动电路六路的直流电压。一般来说,未起动时的每路驱动电路上的直流电压约为10 V,起动后的直流电压为2耀3 V,如果测量结果一切正常的话,基本可以判断此变频器的驱动电路是好的。接着就将IGBT逆变模块连接到驱动电路上,但是记住在没有100%把握的情况下,最稳妥的方法还是将IGBT逆变模块的P从直流母线上断开,中间串联一组灯泡或一个功率大一点的电阻,这样能在电路出现大电流的情况下,保护IGBT逆变模块不被大电容的放电电流烧坏。下面介绍几个在维修变频器时和驱动电路有关的实例。
,