柯西积分公式就是柯西中值定理。如果函数f(x)及F(x)满足:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)内可导;(3)对任一x∈(a,b),F'(x)≠0,那么在(a,b)内至少有一点ζ,使等式[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西积分定理(或称柯西-古萨定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明,如果从一点到另一点有两个不同的路径,而函数在两个路径之间处处是全纯的,则函数的两个路径积分是相等的。另一个等价的说法是,单连通闭合区域上的全纯函数沿着任何可求长闭合曲线的积分是0。