根据常用三角基本关系式,
tanα = sinα/cosα ,
sin²α + cos²α = 1 ,
可得:
tanα = sinα/cosα = (1-cos²α)^0.5/cosα 。
可见,
tanα = (1-cos²α)^0.5/cosα
sin的平方、cos的平方以及tan的平方公式(降幂公式)分别是:
sin²α=[1-cos(2α)]/2;
cos²α=[1+cos(2α)]/2;
tan²α=[1-cos(2α)]/[1+cos(2α)]。
1、sin的平方、cos的平方以及tan的平方相关公式有:
(1)sin²α+cos²α=1
(2)1+tan²α=sec²α
(3)1+cot²α=csc²α
2、在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。