满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A
设A,B 至少有一个为零矩阵则A,B可交换,设A,B 至少有一个为单位矩阵则A,B可交换,设A,B至少有一个为数量矩阵则A,B可交换,设A,B均为对角矩阵则A,B可交换。
AB的行数即A的行数,AB的列数即B的列数AB=BA时,A 的行数等于B的行数,B的列数等于A 的列数,又AB有意义,A 的列数等于B的行数,A,B是同阶矩阵,设A,B都是n阶矩阵,若存在可逆矩阵P,使P^-1AP=B,则称B是A的相似矩阵, 并称矩阵A与B相似,记为A~B。