九元函数

九元函数

首页维修大全综合更新时间:2023-09-10 11:54:47

九元函数

定义:

设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组 ( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。

记为y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈D。 变量x1,x2,…,xn称为自变量,y称为因变量。

当n=1时,为一元函数,记为y=f(x),x∈D,当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D。二元及以上的函数统称为多元函数。

大家还看了
也许喜欢
更多栏目

© 2021 3dmxku.com,All Rights Reserved.